Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Nanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH 3 /N 2 mixture separation factor of 2236 with NH 3 permeance of 1.1 × 10 −6 mol m −2 s −1 Pa −1 , and NH 3 /H 2 separation factor of 307 with NH 3 permeance of 2.3 × 10 −6 mol m −2 s −1 Pa −1 at room temperature. Consistent with a competitive sorption-based separation, lower operating temperatures and higher pressures result in increased separation factor. At 323 K, with an equimolar mixed feed of NH 3 /N 2 , the fluxes and separation factors at 3 and 7 bar are 0.13 mol m −2 s −1 and 191, and 0.26 mol m −2 s −1 and 220, respectively. This performance compares favorably with that of other membranes and suggests that MFI membranes can be used in separation and purification processes involving mixtures of NH 3 /N 2 /H 2 encountered in ammonia synthesis and utilization. The membranes also exhibit high performance for the separation of ethane, n -propane and n -butane from H 2 .more » « less
-
Summary Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs.To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR‐Cas9) and chemical (GC‐MS analysis) approaches.We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillarHelicoverpa zeaon leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding byH. zea, including (Z)‐3‐hexenol, (Z)‐jasmone and (Z)‐3‐hexenyl acetate, which are important airborne signals in plant defenses.Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.more » « less
-
Abstract A challenge in the synthesis of single‐wall carbon nanotubes (SWCNTs) is the lack of control over the formation and evolution of catalyst nanoparticles and the lack of control over their size or chirality. Here, zeolite MFI nanosheets (MFI‐Ns) are used to keep cobalt (Co) nanoparticles stable during prolonged annealing conditions. Environmental transmission electron microscopy (ETEM) shows that the MFI‐Ns can influence the size and shape of nanoparticles via particle/support registry, which leads to the preferential docking of nanoparticles to four or fewer pores and to the regulation of the SWCNT synthesis products. The resulting SWCNT population exhibits a narrow diameter distribution and SWCNTs of nearly all chiral angles, including sub‐nm zigzag (ZZ) and near‐ZZ tubes. Theoretical simulations reveal that the growth of these unfavorable tubes from unsupported catalysts leads to the rapid encapsulation of catalyst nanoparticles bearing them; their presence in the growth products suggests that the MFI‐Ns prevent nanoparticle encapsulation and prologue ZZ and near‐ZZ SWCNT growth. These results thus present a path forward for controlling nanoparticle formation and evolution, for achieving size‐ and shape‐selectivity at high temperature, and for controlling SWCNT synthesis.more » « less
An official website of the United States government
